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SUMMARY

A finite-volume multi-stage (FMUSTA) scheme is proposed for simulating the free-surface shallow-water
flows with the hydraulic shocks. On the basis of the multi-stage (MUSTA) method, the original Riemann
problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted
for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting
first-order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the
special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high-
resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used.
For modeling shallow-water flows with source terms, the surface gradient method (SGM) is adopted. The
proposed schemes are verified using the simulations of six shallow-water problems, including the 1D
idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the
circular dam breaking and two dam-break experiments. The simulated results by the proposed schemes
are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the
proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as
the commonly adopted Roe and HLL schemes. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Free-surface shallow-water flows with hydraulic shock waves are commonly modeled by the two-
dimensional (2D) shallow-water equations (SWE), which are considered as a non-linear system
of hyperbolic conservation laws. Various types of monotonic numerical schemes developed for
solving hyperbolic systems of conservation laws have been proposed in the literature [1–6]. These
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schemes require the well-known monotonic numerical fluxes for resolving discontinuities without
spurious oscillations [4–6].

In general, there are two main approaches for establishing a monotonic numerical flux [5].
A simplest approach uses a centred or symmetric stencil and does not explicitly employ wave-
propagation information. This approach results in the so-called centred schemes, such as the Lax–
Friedrichs scheme and the first-order centred (FORCE) scheme [5]. The more accurate approach
adopts the wave-propagation viewpoint in the solution of the Riemann problem and leads to the
so-called upwind schemes or Riemann solvers [6]. The Riemann problem can be exactly solved.
However, the expensive iterative procedures are required for the exact Riemann solver [5]. Thus,
the so-called approximate Riemann solvers are more efficient and become practically popular for
the constructions of the numerical fluxes, such as the Roe scheme [1], the Steger–Warming splitting
(SWS) scheme [2], the Osher scheme [3], the Harten, Lax and van Leer (HLL) scheme [5], etc.

In recent years, many monotonic centred or upwind schemes have been applied to the simulations
of shallow-water flows via the finite-volume method (FVM). For instance, Zoppou and Roberts [7]
employed the HLLC scheme, where C stands for contact, for modeling the dam-break problems.
Toro [8] presented the Lax–Friedrichs scheme and the FORCE scheme for the dam-break flow
simulations. Wan et al. [9] adopted the Osher scheme to the practical flow simulation in the natural-
irregular river topography. Erduran et al. [10] presented the performance tests of the five monotonic
upwind schemes, namely the Osher, the HLL, the HLLC, the Roe and the SWS schemes. They
found that the SWS scheme is the most efficient and the Osher scheme is the most accurate among
the schemes tested. Lai et al. [11] proposed a robust and efficient hybrid flux-splitting finite-volume
(HFF) scheme for simulating hydraulic shock waves. Lately, Lai et al. [12] proposed an upstream
flux-splitting finite-volume (UFF) scheme for the solutions of the 2D SWE. The UFF scheme was
also compared with the commonly used Osher, Roe and HLL schemes. The UFF scheme has been
shown to have superior overall numerical performances among the schemes tested.

From the above literature review, it is evident that the upwind schemes are generally more
accurate than the simple and efficient centred ones. Recently, a multi-stage (MUSTA) method
for the hyperbolic systems of conservation laws has been proposed in the literature [13–15]. The
MUSTA method is rather simple for estimating a numerical flux because it does not require the
use of the eigenstructure of the governing equations. Hence, the MUSTA method could be widely
applicable to the general systems of hyperbolic conservation laws. For the Euler equations, the
MUSTA scheme has been shown to combine the simplicity of the centred scheme and the accuracy
of the upwind scheme [13].

The purpose of this paper is to propose a finite-volume multi-stage (FMUSTA) scheme for
solving 2D SWE with the source terms. The FVM is employed to shorten the 2D problem into a
number of local 1D Riemann problems in the direction normal to the cell interface. On the basis
of the MUSTA method proposed by Toro and Titarev [15], the numerical flux function of the
local Lax–Friedrichs scheme is adopted to establish the first-order monotonic FMUSTA scheme.
The second-order-accuracy extension of the proposed FMUSTA scheme is achieved by using the
monotonic upstream schemes for conservation laws (MUSCL) method [4]. For the treatment of
source terms, the surface gradient method (SGM) proposed by Zhou et al. [16] is employed for
the data reconstruction of the water level. The proposed first-order and second-order schemes are
applied to simulate six shallow-water flows with hydraulic shock waves, including the 1D idealized
dam-break flow, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the
circular dam-break flow, the dam-break flow over a hump and the dam-break flow with 90◦ bend
channel.
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2. GOVERNING EQUATIONS

The non-linear system of 2D SWE can be expressed in the conservative form as [17]
�Q
�t

+ �F
�x

+ �G
�y

=S (1)

in which

Q=
⎡⎢⎣

h

hu

hv

⎤⎥⎦ , F=

⎡⎢⎢⎢⎣
hu

hu2+ gh2

2

huv

⎤⎥⎥⎥⎦ , G=

⎡⎢⎢⎢⎣
hv

huv

hv2+ gh2

2

⎤⎥⎥⎥⎦ , S=
⎡⎢⎣

0

gh(s0x −sfx )

gh(s0y−sfy)

⎤⎥⎦ (2)

where Q is the conserved physical vector; F and G are the flux vectors in the x- and y-directions,
respectively; S is the source term; h is the water depth; u and v are the depth-averaged velocity
components in the x- and y-directions, respectively; g is the gravitational acceleration; s0x and sfx
are the bed slope and the friction slope in the x-direction, respectively; and s0y and sfy are the bed
slope and the friction slope in the y-direction, respectively. Employing the Manning formula, the
friction slopes are

sfx = un2m
√
u2+v2

h4/3
, sfy = vn2m

√
u2+v2

h4/3
(3)

where nm is the Manning roughness coefficient.

3. FMUSTA SCHEMES

3.1. Cell-centred FVM

The commonly used cell-centred FVM for the discretization of the conservative governing equations
is adopted in this paper [5]. Adopting the divergence theorem, the integral form of Equation (1)
over an arbitrary control volume � is∫ ∫

�

�Q
�t

dW +
∫

��
(F,G) ·ndl=

∫ ∫
�
SdW (4)

where dW is the area element; �� is the boundary of the control volume �; dl is the arc element;
and n is the outward unit vector normal to the ��. The vector quantity Q is assumed to be constant
over each cell, leading to the cell-centred FVM. On the basis of the rotational invariance property
of the governing equations, Equation (4) is discretized as the basic equation of FVM

A
dQ
dt

+
M∑

m=1
T(�)−1F(Q)Lm = S̃ (5)

where A is the area of the cell; m is the index that represents the side of the cell; M is the total
number of the sides for the cell; Lm is the length of the m side for the cell; S̃ is the integral form
of the source terms; F(Q)=[hux ,hu2x +gh2/2,huxvy]T is the normal flux vector for the m side;
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Figure 1. Numerical FVM framework.

Q=T(�)Q=[h,hux ,hvy]T is the vector variables transformed from Q;� is the angle between
the outward unit vector n and the x-axis; T(�) is the rotation matrix corresponding to the m
side; T(�)−1 is its inverse [17]; and ux and vy are, respectively, the velocity components in the
x- and y-directions, which are denoted as ux =u cos�+v sin� and vy =v cos�−u sin�. On the
basis of the FVM, as shown in Figure 1, the numerical flux can be obtained by solving the local
1D Riemann problem in the x-direction, namely [11]

�Q
�t

+ �[F(Q)]
�x

=0 (6a)

with

Q(x,0)=
{
QL , x<0

QR, x>0
(6b)

in which QL and QR represent the initial conserved constant quantities on the left cell L and the
right cell R of the cell interface LR, respectively. The resulting first-order finite-volume scheme
has the form

Qn+1
i, j =Qn

i, j −
[
�t

A

M∑
m=1

T(�)−1F(1)Lm
]n
i, j

+
(

�t

A
S̃
)n

i, j
=0 (7)

where i and j are the space indexes; n is the time index; �t is the time step; Qn
i, j is the vector of

conserved variables for the cell (i , j) at time index n; and F(1) is the first-order numerical flux.

3.2. MUSTA method

As shown in Equation (7), a monotonic numerical flux F(1) is required. Toro [13] proposed a
rather simple and general MUSTA method for estimating a monotonic numerical flux. This paper
directly employs the MUSTA method in FVM framework to estimate a finite-volume numerical
flux via the predictor and the corrector steps. In the predictor step, the solution of the corresponding
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Riemann problem is numerically approximated to produce two modified states on either side of
the cell interface. Then, the corrector step uses a numerical flux function with the two modified
states of the predictor step for estimating the numerical flux.

3.2.1. Predictor step. According to the MUSTA method, the solution in Equation (6) is obtained
by transforming original Riemann problem in an independent so-called MUSTA mesh, as shown
in Figure 2 [15]. The corresponding Riemann problem on the d−� plane has the form

�Q
��

+ �[F(Q)]
�d

=0 (8a)

with

Q(d,0)=
{
Qn

L , d<0

Qn
R, d>0

(8b)

where d represents the spatial variable, associated with x ; and � denotes the temporal variable,
associated with t . In the MUSTA mesh as illustrated in Figure 2, the d-axis is discretized into a
number of cells with total number N and regular size �d. The �-axis includes a number of time
stages with total stage K . Figure 2 also indicates that cells L and R correspond, respectively,
to cells 0 and 1 in the MUSTA mesh. Thus, the numerical flux at interface LR in Equation (7)
corresponds to the one at interface 1

2 in the MUSTA mesh.
For approximating the solution of the Riemann problem (8), the initial condition in the MUSTA

mesh is defined as

Q(0)
l =

{
Qn

L , l�0

Qn
R, l�1

(9)
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Figure 2. The MUSTA method in the FVM framework.
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in which l represents the space index in the MUSTA mesh. The �-time evolution of the problem
is advanced to obtain the local solution by the use of the conservative formula

Q(k+1)
l =Q(k)

l −
(

��

�d

)(k)

[(Fp)
(k)
l+1/2−(Fp)

(k)
l−1/2] (10)

where �� is the time step in the MUSTA mesh and Fp is a two-point monotonic numerical flux,
namely the MUSTA predictor flux. After a prescribed number of stages K with time evolution
of the solution, the predictor step is performed and two new interface states Q(K )

0 and Q(K )
1 are

obtained on the MUSTA mesh.

3.2.2. Corrector step. With Q(K )
0 and Q(K )

1 , the numerical flux F(K )
LR for interface LR is esti-

mated by using a specified two-point monotonic numerical flux Fc, namely the MUSTA corrector
flux:

F(K )
LR =Fc(Q

(K )
0 ,Q(K )

1 ) (11)

Finally, using the numerical flux F(1) =F(K )
LR , Equation (7) leads to a first-order monotonic numerical

scheme, namely the FMUSTA scheme.
As described in Sections 3.2.1, the MUSTA method requires the choice of the number of stages

K . In theory, the larger the number of stages, the closer the resulting numerical flux is to the
Godunov flux of the exact Riemann solver. Nevertheless, according to Toro and Titarev [15] the
choice K =1 is recommended for practical applications.

3.2.3. FMUSTA scheme (K = 1). As illustrated in Figure 2, the MUSTA method requires a
number of cells N , stages K and the numerical boundary conditions. The simplest choice is
the one-stage (K =1) approach, in which the two cells (0 and 1) are adopted. The boundary
fluxes are estimated on the nearest cells in the interior of the computational domain. This treat-
ment is efficient and does not result in much loss of the numerical accuracy [15]. As shown in
Figure 3, as K =1 the initial data in the one-stage MUSTA method are prescribed in the domain
of just two cells, namely l=0 and l=1. Therefore, the simplest one-stage MUSTA method is
advanced using the conservative Equation (10) to construct the two new interface states Q(1)

0

and Q(1)
1 :

Q(1)
0 =Q(0)

0 −
(

��

�d

)(0)

[(Fp)
(0)
1/2−(Fp)

(0)
−1/2] (12a)

Q(1)
1 =Q(0)

1 −
(

��

�d

)(0)

[(Fp)
(0)
3/2−(Fp)

(0)
1/2] (12b)

where the MUSTA predictor flux at interface 1
2 has the form:

(Fp)
(0)
1/2=Fp(Q

(0)
0 ,Q(0)

1 )=Fp(Qn
L ,Qn

R) (13)
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Figure 3. Example of a MUSTA method (K =1).

The boundary fluxes (Fp)
(0)
−1/2 and (Fp)

(0)
3/2, denoted by the dashed-line arrows in Figure 3, are

computed with the initial data expressed in Equation (9)

(Fp)
(0)
−1/2=F(Q(0)

0 )=F(Qn
L) (14a)

(Fp)
(0)
3/2=F(Q(0)

1 )=F(Qn
R) (14b)

By following Toro and Titarev [15], the time step ��(0) in one-stage MUSTA method has the form

��(0) = CFL�d(0)

c(0)
max

(15)

in which CFL represents the Courant–Friedrichs–Lewy stability coefficient; and c(0)
max is the

maximum signal speed in the MUSTA mesh at initial stage. For the 2D SWE, c(0)
max denotes the

maximum wave-propagation speed and can be expressed as

c(0)
max=max(|ux +√gh|(0)1 , |ux +√gh|(0)0 ) (16)

Substituting Equations (9) and (13)–(15) into Equation (12) one obtains

Q(1)
0 =Qn

L − CFL

c(0)
max

[Fp(Qn
L ,Qn

R)−F(Qn
L)] (17a)

Q(1)
1 =Qn

R− CFL

c(0)
max

[F(Qn
R)−Fp(Qn

L ,Qn
R)] (17b)

As K =1 expressed in Equation (17), the MUSTA method is completely performed. With the two
new interface states Q(1)

0 and Q(1)
1 , the monotonic numerical flux is achieved by employing the

MUSTA corrector flux:

F(1)
LR =Fc(Q

(1)
0 ,Q(1)

1 ) (18)

Finally, with the numerical flux F(1) =F(1)
LR one obtains the one-stage FMUSTA scheme (K =1).
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3.2.4. Predictor and corrector fluxes. To completely estimate the numerical flux, the MUSTA
predictor and corrector fluxes are required. In order to achieve simplicity and generality, the most
general choice is to utilize a simple and efficient flux both for the predictor and the corrector fluxes
[15]. Thus, the local Lax–Friedrichs flux estimation, which has been proven to be the simplest
and the most efficient among several commonly used schemes by Lai et al. [11], is employed
herein. Using the local Lax–Friedrichs numerical flux function [11, 18], the MUSTA predictor and
corrector fluxes are, respectively,

Fp(Qn
L ,Qn

R)= 1

2
[F(Qn

L)+F(Qn
R)]− 1

2

c(0)
max

CFL
(Qn

R−Qn
L) (19a)

Fc(Q
(1)
0 ,Q(1)

1 )= 1

2
[F(Q(1)

0 )+F(Q(1)
1 )]− 1

2

c(1)
max

CFL
(Q(1)

1 −Q(1)
0 ) (19b)

c(1)
max=max(|ux +√gh|(1)1 , |ux +√gh|(1)0 ) (19c)

Finally, the algorithm for estimating the numerical flux in the one-stage FMUSTA scheme (K =1)
is summarized as follows:

1. Using Equation (19a), one obtains the predictor flux at local interface 1
2 .

2. Employing Equation (17), one obtains two new interface states Q(1)
0 and Q(1)

1 .

3. With Q(1)
0 and Q(1)

1 , Equation (19b) leads to the one-stage numerical flux F(1)
LR =

Fc(Q
(1)
0 ,Q(1)

1 ).

4. As F(1) =F(1)
LR , Equation (7) leads to the one-stage FMUSTA scheme (K =1).

Note that as K =0, Equation (7) leads to the original local Lax–Friedrichs scheme.
The procedure to estimate the numerical flux in the k-stage FMUSTA scheme with two cells

(0 and 1) is also described herein. The MUSTA is started by setting Q(0)
0 =Qn

L and Q(0)
1 =Qn

R for
initial stage k=0. Then, for 0�k�K −1, where K is the desired number of stages, the algorithm
is summarized as follows:

1. Employ the local Lax–Friedrichs numerical flux function to estimate the numerical flux at
the stage k as:

F(k)
1/2= 1

2
[F(Q(k)

0 )+F(Q(k)
1 )]− 1

2

c(k)
max

CFL
(Q(k)

1 −Q(k)
0 ) (20a)

c(k)
max=max(|ux +√gh|(k)1 , |ux +√gh|(k)0 ) (20b)

2. Update the left and right data by

Q(k+1)
0 =Q(k)

0 −CFL

c(k)
max

[F(k)
1/2−F(Q(k)

0 )] (21a)

Q(k+1)
1 =Q(k)

1 − CFL

c(k)
max

[F(Q(k)
1 )−F(k)

1/2] (21b)

3. Goto step 1.
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The procedure is stopped at the end of step 1 if the desired number of stages has been reached.
The final flux in the k-stage FMUSTA scheme is given by F(1) =F(K )

LR =F(K )
1/2 .

3.3. Second-order extension

The MUSCL method [4] is adopted herein for establishing the second-order extension of the
proposed FMUSTA scheme. The extension consists of two steps, a predictor and a corrector. In
the predictor step, the first-order numerical flux F(1) is used to advance the intermediate values
over a half time step. In the corrector step, the second-order numerical flux F(2) is adopted to
achieve the final solution over a time step. The resulting scheme has the following form:

Qn+1/2
i, j =Qn

i, j −
[

�t

2A

M∑
m=1

T(�)−1F(1)Lm
]n
i, j

+
(

�t

2A
S̃
)n

i, j
(22a)

Qn+1
i, j =Qn

i, j −
[
�t

A

M∑
m=1

T(�)−1F(2)Lm
]n+1/2

i, j

+
(

�t

A
S̃
)n+1/2

i, j
(22b)

In Equation (22), the first-order numerical flux F(1) is obtained by the MUSTA method with two
initial constant values Qn

L and Qn
R . For the second-order numerical flux F(2), the constant values

are reconstructed using the MUSCL method. By introducing a non-linear slope limiter function to
avoid the numerical oscillations, the reconstructed values of conserved variables on the left and
right of the cell interface (i+1/2, j), respectively, have the form

QL
i+1/2, j =T(�)(Qn+1/2

i, j + 1
2�

n+1/2
i, j ) (23a)

QR
i+1/2, j =T(�)(Qn+1/2

i+1, j − 1
2�

n+1/2
i+1, j ) (23b)

in which �i, j =�i, j (�i+1/2, j ,�i−1/2, j ) represents the non-linear slope limiter function and several
different forms of slope limiters can be employed [4]. The Roe symmetric limiter function [19] is
adopted herein

�i, j =
⎧⎨⎩�i+1/2, j if |�i+1/2, j |<|�i−1/2, j |

�i−1/2, j otherwise
(24)

where �i+1/2, j =Qn+1/2
i+1, j −Qn+1/2

i, j and �i−1/2, j =Qn+1/2
i, j −Qn+1/2

i−1, j . With the left and right recon-
structed cell-interface variables expressed in Equation (23), the second-order numerical flux through
the cell interface (i+1/2, j) can be directly obtained by employing the MUSTA method described
in Sections 3.1–3.2. On the basis of the MUSCL method, the resulting second-order extension of
the proposed FMUSTA scheme is referred to as the FMUSTA-MUSCL scheme in this paper.

3.4. Treatment of source terms

Modeling shallow-water flows with the presence of the bed slope and friction slope numerically
requires the proper treatment of source terms in 2D SWE [20]. Recently, different methods have
been proposed to cope with the source terms [20–25]. The SGM proposed by Zhou et al. [16]
has been shown to be simple, and it can be well implemented in the MUSCL method. In the
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present study, the SGM is adopted in the data reconstruction of Equation (23). On the basis of
the SGM, the left and right water levels, �Li+1/2, j and �R

i+1/2, j , of the cell interface (i+1/2, j) are
reconstructed using Equation (23). Then, the left and right cell interface (i+1/2, j) water depths,
hLi+1/2, j and hR

i+1/2, j , are, respectively,

hLi+1/2, j =�Li+1/2, j −zbi+1/2, j , hR
i+1/2, j =�R

i+1/2, j −zbi+1/2, j (25)

where zbi+1/2, j is the bed elevation at the cell interface (i+1/2, j). The velocities are then
reconstructed as

(ux )
L
i+1/2, j =(hux )

L
i+1/2, j/h

L
i+1/2, j , (ux )

R
i+1/2, j =(hux )

R
i+1/2, j/h

R
i+1/2, j (26a)

(vy)
L
i+1/2, j =(hvy)

L
i+1/2, j/h

L
i+1/2, j , (vy)

R
i+1/2, j =(hvy)

R
i+1/2, j/h

R
i+1/2, j (26b)

For the discretization of the bed slope source terms, the divergence theorem is used to calculate [26]
�zb
�x

= (zb1−zb3)(y2− y4)−(zb2−zb4)(y1− y3)

(x1−x3)(y2− y4)−(x2−x4)(y1− y3)
(27a)

�zb
�y

= (zb1−zb3)(x2−x4)−(zb2−zb4)(x1−x3)

(y1− y3)(x2−x4)−(y2− y4)(x1−x3)
(27b)

where the subscripts 1,2,3, and 4, respectively, represent the node numbers of the cell (i, j).
Therefore, the x and y components of the source terms S̃ in Equation (22) are, respectively,
discretized as:

S̃x =−ghi, j Ai, j

⎡⎣ (zb1−zb3)(y2− y4)−(zb2−zb4)(y1− y3)

(x1−x3)(y2− y4)−(x2−x4)(y1− y3)
+
ui, j n2mi, j

√
u2i, j +v2i, j

h4/3i, j

⎤⎦ (28a)

S̃y =−ghi, j Ai, j

⎡⎣ (zb1−zb3)(x2−x4)−(zb2−zb4)(x1−x3)

(y1− y3)(x2−x4)−(y2− y4)(x1−x3)
+

vi, j n2mi, j

√
u2i, j +v2i, j

h4/3i, j

⎤⎦ (28b)

3.5. Stability and boundary conditions

For the numerical stability requirement, the time step �t must be restricted by the CFL condi-
tion [27]. The time step is limited by

�t�CFLmin

(
di, j

max(
√
u2+v2+√

gh)i, j

)
(29)

where di, j denotes the whole set of distances between the i, j th centroid and the centroids of the
four adjacent cells. As CFL=1, Equation (29) gives rise to a maximum allowable time step.

The boundary conditions used herein include the land boundary and the open boundary. At the
land boundary, the velocity normal to the land is set to be zero such that no flux occurs through the
boundary. The open boundary conditions are set by the use of the outgoing Riemann invariants.
For a detailed description about the adopted boundary conditions used herein one can be refer to
Reference [18].
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4. NUMERICAL RESULTS AND DISCUSSIONS

The numerical performances of the first-order and second-order proposed schemes with different
numbers of stages K are evaluated using the six shallow-water flow simulations, namely the 1D
idealized dam-break flow, the steady transcritical flow over a hump, the 2D oblique hydraulic
jump, the circular dam-break flow, the dam-break flow over a hump and the dam-break flow with
a 90◦ bend channel. Two commonly used upwind schemes, namely the Roe scheme and the HLL
scheme, are adopted herein to compare with the proposed FMUSTA schemes. All of the tests were
performed on a Pentium IV equipped with a 1 gigabyte RAM.

4.1. 1D idealized dam-break flow

The purpose of the 1D idealized dam-break test problem is to assess the performances of the
proposed FMUSTA schemes in resolving the shock waves, in which it is well known that the non-
monotonic scheme presents spurious oscillations around shocks. The present test is the dam-break
flow over a rectangular, frictionless and horizontal channel with 2000m length and 10m width.
The initial conditions consist of two constant still water depths separated by a dam located at the
middle of the channel. The initial upstream water depth hus is 10m, and downstream water depths
hds are 5 and 0.1m, respectively. Hence, two initial water-depth ratios hds/hus of 0.5 and 0.01 are
tested. Hundred computational cells (i.e. grid spacing �x of 20m) are used. The CFL number is
set to be 0.9 for all the tests. The simulation time is 50 s after the dam breaks.

4.1.1. Effect of stage number K. As described in Section 3.2, the usage of the different stage
number K in the MUSTA method can result in different numerical performances of the proposed
FMUSTA scheme. To show the influence of stage number on the simulated results, three different
numbers of stages, K =1,2 and 3, are considered herein. Figure 4 shows the influence of K on
the simulated water depth for the test case with a water-depth ratio of 0.01. It is clear that the
proposed FMUSTA schemes can capture the shock and the rarefaction wave without any spurious
oscillation. The result also indicates that the proposed two-stage (K =2) and three-stage (K =3)
FMUSTA schemes present almost the same resolutions, and they seem more accurate than the
one-stage FMUSTA scheme (K =1).

To evaluate the numerical accuracy quantitatively, three different error norms, L1, L2 and L∞,
are used herein [6]

L1=
∑ |Y sim

i, j −Y exact
i, j |∑ |Y exact

i, j | , L2=
√√√√∑

(Y sim
i, j −Y exact

i, j )2∑
(Y exact

i, j )2
, L∞ = max |Y sim

i, j −Y exact
i, j |

max |Y exact
i, j | (30)

where Y sim
i, j and Y exact

i, j are the simulated solution and the exact solution at cell (i, j), respectively.
Table I summarizes the error norms of the water depth and CPU time for water-depth ratios of
0.01. As listed in Table I, the proposed three-stage FMUSTA scheme yields the smallest error
norms of L1, L2 and L∞; however, it also consumes the largest CPU time. The two-stage and
three-stage FMUSTA schemes are, respectively, about 13 and 26% more expensive than the one-
stage FMUSTA scheme. According to CPU-time consumption, the one-stage FMUSTA scheme
(K =1) is more efficient for practical applications, and it is adopted for the following numerical
simulations.
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Figure 4. The influence of stage number K on the simulated water depths for a water-depth ratio of 0.01.

Table I. The L1, L2, L∞ norms and the CPU-time consumptions by the proposed FMUSTA
schemes with different numbers of stages K for the idealized dam-break problem.

Scheme L1 L2 L∞ CPU (s)

FMUSTA (K =1) 0.0174 0.0345 0.161 0.039
FMUSTA (K =2) 0.0166 0.0297 0.149 0.044
FMUSTA (K =3) 0.0165 0.0292 0.146 0.049

4.1.2. Comparison of first-order schemes. Employing the one-stage FMUSTA scheme, the simu-
lated results for the water-depth ratios of 0.5 are displayed in Figure 5. The exact solution [28] and
the simulated results by the commonly used Roe and HLL schemes are also plotted for comparison.
As illustrated in Figure 5 with the close-up of the head of the rarefaction wave, the FMUSTA
scheme produces the best resolution. With the close-up of the shock front, the FMUSTA and
Roe schemes obtain similar shock-capturing resolutions and they are more accurate than the HLL
scheme.

For the water-depth ratio of 0.01, the purpose of this test case is to evaluate the performance of
the proposed scheme in simulating the transcritical flows, in which the exact flow condition at the
dam site is critical (i.e. Froude number of 1.0) [28]. It is well known that the Roe scheme requires
the entropy fix to avoid the apparently entropy-violating solution. Thus, the Roe scheme with the
entropy correction [4] is adopted herein for comparison. Figure 6 shows the comparison of the
exact solutions with the simulated water depths using the one-stage FMUSTA, Roe with entropy
fix and HLL schemes for the water-depth ratio of 0.01. From the simulated results, it is found that
the FMUSTA and HLL schemes present similar resolutions near the shock fronts. In addition, the
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Table II. The L1, L2, L∞ norms and the CPU-time consumptions by the first-order upwind
schemes for the idealized dam-break problem.

Scheme L1 L2 L∞ CPU (s)

FMUSTA (K =1) 0.0174 0.0345 0.161 0.039
Roe 0.0211 0.0340 0.149 0.047
HLL 0.0254 0.0405 0.161 0.032
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Figure 7. Comparisons of exact solutions with simulated water depths using
second-order schemes for a water-depth ratio of 0.01.

FMUSTA scheme obtains the best resolution at the head of the rarefaction wave. At the critical
point (i.e. the dam site) the solution by the FMUSTA scheme is very smooth and more accurate
than those by the Roe and the HLL schemes. The results indicate that the FMUSTA scheme does
not require the special treatment of entropy fixes and yet obtain good solutions automatically for
the class of dam-break problems with critical points at the dam site.

From the quantitative results listed in Table II, the Roe scheme was found to have the smallest
error norms of L∞. It implies that the Roe scheme achieves best accurate shock-capturing resolu-
tions among the one-stage FMUSTA, Roe and HLL schemes. However, the CPU time consumed
by the Roe scheme is the largest among the schemes tested. Table II also shows that the proposed
FMUSTA scheme achieves satisfactory overall numerical accuracy and efficiency compared with
the Roe and HLL schemes.

4.1.3. Comparison of second-order schemes. The proposed second-order FMUSTA-MUSCL
scheme (K =1) is tested and compared with the commonly adopted second-order schemes, namely
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Table III. The L1, L2, L∞ norms and the CPU-time consumptions by the second-order schemes
for the idealized dam-break problem.

Scheme L1 L2 L∞ CPU (s)

FMUSTA-MUSCL (K =1) 0.0032 0.0086 0.044 0.083
Roe-MUSCL 0.0035 0.0083 0.041 0.099
HLL-MUSCL 0.0052 0.0143 0.086 0.069
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Figure 8. Convergence curves using the proposed FMUSTA and FMUSTA-MUSCL schemes
(K =1) for a water-depth ratio of 0.01.

the Roe-MUSCL and HLL-MUSCL schemes, for the water-depth ratio of 0.01. All second-order
schemes tested herein are based on the MUSCL method with the slope limiter function presented
in Equation (24). Comparison of the exact solutions with the simulated water depths using the
three second-order upwind schemes is shown in Figure 7. On the basis of the quantitative results
for error norms and CPU time consumed in Table III, the proposed FMUSTA-MUSCL scheme
was found to achieve satisfactory overall numerical accuracy and efficiency compared with the
Roe-MUSCL and the HLL-MUSCL schemes.

4.1.4. Grid refinement effect. A grid convergence study is performed herein to further investigate
the influence of the grid spacing on the numerical performance. The proposed one-stage FMUSTA
and FMUSTA-MUSCL schemes are adopted for the test case of the water-depth ratio of 0.01.
Table IV lists the grid information, the L1 norms and the order of accuracy p [6]

p= log(L1fine)− log(L1coarse)

log(�xfine)− log(�xcoarse)
(31)

in which L1fine and L1coarse represent the L1 norms computed by the fine and coarse grids,
respectively; �xfine and �xcoarse denote the grid spacing of the fine and coarse grids, respectively.
Figure 8 shows the convergence curves for the FMUSTA and FMUSTA-MUSCL schemes with
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Table IV. The L1 norms and the order of accuracy p for the idealized dam-break problem using the
proposed FMUSTA and FMUSTA-MUSCL schemes (K =1).

FMUSTA (K =1) FMUSTA-MUSCL (K =1)

Number of cells Grid spacing L1 p L1 p

50 40 0.0609 — 0.01879 —
100 20 0.0345 0.82 0.00864 1.12
200 10 0.0218 0.66 0.00419 1.04
400 5 0.0138 0.66 0.00187 1.16
800 2.5 0.0087 0.67 0.00075 1.32
1600 1.25 0.0052 0.74 0.00029 1.37

the different grid spacings, which is normalized by the finest grid spacing (i.e. �x=1.25m). The
results demonstrate that both proposed schemes converge correctly to the exact solution as the
grid spacing becomes smaller. With the smallest grid spacing tested, an almost grid-independent
solution is obtained by the FMUSTA-MUSCL scheme. For all of the tested grid spacing, as shown
in Table IV, the order of accuracy computed from the FMUSTA scheme is on an average about 0.71
and lower than the theoretical order of accuracy (i.e. p=1). For the FMUSTA-MUSCL scheme,
the average order of accuracy is about 1.2, which is also lower than the theoretical one (i.e. p=2).
The discrepancy between the computed and the theoretical values may be due to the non-linearity
of the solution, the presence of discontinuity and perhaps other factors [6].

4.2. Steady transcritical flow over a hump

The purpose of the steady transcritical flow simulation is to assess the performances of the proposed
FMUSTA schemes for capturing the hydraulic shocks with an uneven bed. The test problem has
the hump on the bed with elevation variations as a function of [16]

zb(x)=

⎧⎪⎪⎨⎪⎪⎩
0 if x<8m

0.2−0.05(x−10)2 if 8�x�12m

0 if x>12 m

(32)

The frictionless and rectangular channel with 25m length and 1m width is considered. Two hundred
computational cells are used and the computational time step is set to be 0.02 s. A discharge per
unit width of 0.18m2/s is specified at the upstream boundary and a water depth of 0.33m is
imposed at the downstream boundary.

Employing the one-stage FMUSTA and FMUSTA-MUSCL schemes, the simulated water levels,
Froude numbers and discharges per unit width compared with the exact solutions are shown in
Figures 9(a), (b) and (c), respectively. According to the exact solution [29], the critical flow is
produced at the top of the hump due to the given boundary conditions, as illustrated in Figure
9(b). The simulated transition with a shock (hydraulic jump) by the proposed schemes is well
predicted without the spurious oscillations. The proposed FMUSTA-MUSCL produces more accu-
rate solutions than those by the FMUSTA scheme, especially for resolutions of the Froude number
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Figure 9. Comparison of the exact solution with the simulated (a) water levels, (b) Froude
numbers and (c) discharge per unit width using the FMUSTA and FMUSTA-MUSCL

schemes (K =1) for the steady transcritical test flow.

and discharges per unit width. Consequently, the satisfactory simulated results demonstrate the
capability of the proposed schemes coupled with the SGM in dealing with bed slope variations.

4.3. 2D Oblique hydraulic jump

When a converging vertical wall is deflected along the channel contraction through an angle �
inwards the supercritical flow, as shown in Figure 10, an oblique hydraulic jump originating at point
O is produced with an angle of �. The purpose of this commonly tested problem [10–12, 18, 27]
is to verify the performance of the proposed schemes for predicting the steady supercritical flow
with a hydraulic shock. The angle between the converging wall and the flow direction is given
by �=8.95◦. The initial supercritical flow conditions are given by the water depth of 1m, the
velocity component u of 8.57m/s and v of zero, corresponding to a Froude number of 2.74. The
supercritical inflow boundary conditions of h=1m,u=8.57m/s and v=0m/s are imposed at
the upstream inflow boundary. At the downstream outflow boundary, the transmissive boundary
conditions are given [8]. The computational time step is set to be 0.02 s. The computational mesh
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Figure 10. The 2D oblique hydraulic jump problem.
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Figure 11. The computational mesh for the 2D oblique hydraulic jump problem.

with 40×30 non-rectangular cells is used and shown in Figure 11. To obtain a steady-state solution,
a convergence criterion represented by R is used and has the form

R=
√√√√∑

(hn+1
i, j −hni, j )

2∑
(hni, j )

2
�1.0×10−5 (33)

where hni, j and hn+1
i, j are the computed water depths at the time steps n and n+1, respectively.

Figure 12 shows the simulated water depths using the first-order FMUSTA scheme along Line
EH illustrated in Figure 11. The simulated results by the Roe and HLL schemes are plotted in
Figure 12 for comparison. The comparison with the exact solution [30] shows that the proposed
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Figure 12. Comparisons of the exact solutions with the simulated water-depth profiles
along Line EH (see Figure 11) using first-order schemes.

Table V. The error norms obtained from the first-order schemes for 2D oblique hydraulic jump problem.

Scheme L1 L2 L∞ CPU for convergence criterion (s) Number of iteration

FMUSTA (K =1) 0.0182 0.0493 0.331 1.94 206
Roe 0.0208 0.0526 0.331 2.21 220
HLL 0.0214 0.0533 0.331 1.61 220

FMUSTA scheme resolves the jump without spurious oscillation and slightly sharper than the Roe
and the HLL schemes. Table V lists error norms from the simulated results, including L1, L2 and
L∞. Besides, the CPU time for reaching the convergence criterion is summarized in Table V. It
is found that all of the schemes obtain the same error norms of L∞. The CPU time consumed by
the Roe scheme is the largest among the schemes tested. The proposed FMUSTA scheme has a
superior overall numerical accuracy according to the smallest error norms of L1 and L2.

Figures 13(a) and (b) show the contour plots of the simulated water depth by the FMUSTA and
FMUSTA-MUSCL schemes, respectively. It is obvious that the second-order FMUSTA-MUSCL
scheme achieves more accurate resolution than the first-order FMUSTA scheme.

4.4. Circular dam-break flow

The hypothetical test case studied by many researchers [7, 10–12] involves the breaking of a
circular dam. This problem can be adopted to assess the capability of the proposed FMUSTA-
MUSCL scheme in modeling 2D symmetric dam-break flow. The initial conditions include the
two regions of still water separated by a cylindrical dam of radius 11m. The initial water depth
inside the dam is 10m and outside is 1m. A circular mesh with 50 cells in the tangential direction
and 25 cells along the radial direction is employed herein. The computational time step is 0.02 s.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:177–204
DOI: 10.1002/fld



196 W.-D. GUO, J.-S. LAI AND G.-F. LIN

5 10 15 20 25 30 35

x (m)

5

10

15

20

25

y 
(m

)

5 10 15 20 25 30 35

x (m)

5

10

15

20

25

y 
(m

)

Contour interval = 0.05 m Contour interval = 0.05 m 

(b)(a)

Figure 13. The contour plots of the 2D oblique hydraulic jump problem using (a) the FMUSTA and
(b) FMUSTA-MUSCL schemes (K =1).
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Figure 14. (a) The 2D contour plot and (b) 3D free-surface view showing water-depth variations for the
circular dam breaking at t=0.69s using the FMUSTA-MUSCL scheme (K =1).

The 2D contour as well as the 3D view of the water surface elevation at t=0.69s simulated
by the second-order FMUSTA-MUSCL scheme (K =1) are shown in Figures 14(a) and (b),
respectively. Compared with the simulated results by the other schemes [7, 10–12], the proposed
FMUSTA-MUSCL scheme produces the satisfactory results, in which there are clearly an outward-
propagating circular shock wave and an inward-propagating circular rarefaction wave.
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Figure 15. The layout of the dam-break experiment with a hump.

4.5. Dam-break flow over a hump

To demonstrate the capability of the proposed FMUSTA and FMUSTA-MUSCL schemes for
simulating dam-break flow with the abrupt bed variations, the dam-break flow over a hump with
the experimental data is simulated. The dam-break experiment was reported by Aureli et al. [31]
and conducted in a rectangular channel with a length of 7m and width of 1m. The detailed
experimental domain, including the locations of the dam and hump, is shown in Figure 15. The
initial upstream water level is 0.35m and the downstream depth is 0m, i.e. the dry-bed condition.
To avoid mathematical difficulty in the dry-bed simulation, an almost negligible water depth of
0.00001m is imposed at the downstream of the dam [8]. According to the calibrated value used
in Aureli et al. [31], the Manning roughness coefficient is set to be 0.01. The land boundary
conditions are imposed at the walls. At the upstream boundary, a zero-discharge condition is
specified. At the downstream end of the channel, a transmissive boundary condition is imposed.
The computational mesh with 144 uniform cells is employed. The computational time step is
0.01 s. The total simulation time is 15 s after dam break.

The comparisons between the measured data and the simulated water-depth hydrographs are
shown in Figure 16. For all observation stations at x=1.4,2.25,3.4 and 4.5m, the simulated results
including the shocks, the dry/wet fronts and the reverse flows agree closely with the measured.
The numerical differences between the FMUSTA scheme and the FMUSTA-MUSCL scheme for
all observation stations are almost the same. Both the proposed schemes do achieve very good
resolutions in this dry-bed dam-break flow test case in the presence of abrupt bottom variations.

For comparison purposes, the generalized first-order centred (GFORCE) flux [15] is adopted in
the MUSTA method to give the GMUSTA scheme and applied to the presented dam-break flow
simulation. As an example, Figure 17 shows the comparison result at x=1.4m. The simulated
results by using the upwind Roe and HLL schemes are also added for comparison. The simulated
results show that all the presented schemes obtain global good agreement with the experimental
data. The FMUSTA scheme consumes about 17% less CPU time than the GMUSTA scheme.
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Figure 16. Comparisons of the measured and simulated results using the proposed schemes with K =1
at (a) x=1.4m, (b) x=2.25m, (c) x=3.4m and (d) x=4.5m for the dam-break flow over a hump.
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Figure 17. Comparison with other schemes at x=1.4m for the dam-break flow over a hump.
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G2
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Point number x (m) y (m) Observations x (m) y (m)

1 0.0 0.0 G1 1.19 1.20 

2 2.39 0.0 G2 2.74 0.69 

3 2.39 0.445 G3 4.24 0.69 

4 6.805 0.445 G4 5.74 0.69 

5 6.805 3.86 G5 6.56 1.51 

6 6.31 3.86 G6 6.56 3.01 

7 6.31 0.94 

8 2.39 0.94 

9 2.39 2.44 

10 0.0 2.44 
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Figure 18. The layout of the dam-break experiment with the 90◦ bend channel.

x (m)

y 
(m

)

0
0 1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

3.5

4

7

Figure 19. The computational mesh for the dam-break flow simulation with the 90◦ bend channel.

According to CPU-time consumption, the FMUSTA scheme would be a better choice for the
practical shallow-water flow problems with the source terms.

4.6. Dam-break experiment with a 90◦ bend channel

The Concerted Action on Dam-Break Modeling project (CADAM) includes many dam-break
experiments, which are useful benchmarks for numerical verifications [32]. The dam-break flow in
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Figure 20. Comparisons of the measured and simulated water depths against time at Station (a) G1, (b)
G2, (c) G3, (d) G4, (e) G5 and (f) G6 for the dam-break experiment with the 90◦ bend channel using the

proposed schemes with K =1.

a horizontal channel with a 90◦ bend is simulated herein. As shown in Figure 18, the experimental
domain is a rectangular reservoir connecting to a channel with a 90◦ bend. The reservoir is separated
from the channel by a dam. Then the dam is suddenly opened to produce a dam-break flow. Figure
18 also presents the geometry of the experiment and the locations of the observation stations.
The initial water depths are 0.2m in the reservoir and 0m in the channel. The total simulation
time is 40 s after dam break. The Manning roughness coefficient is calibrated to be 0.015. The
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Figure 21. Comparison with other schemes at Station G4 for the dam-break
experiment with the 90◦ bend channel.
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Figure 22. The simulated 2D contour plot showing water-depth variations for the dam-break experiment
at: (a) t=0.5s and (b) t=4.0s by the FMUSTA-MUSCL scheme (k=1).
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computational mesh with 3200 non-rectangular cells, as illustrated in Figure 19, is used. The
computational time step is 0.01 s.

Adopting the FMUSTA scheme and the FMUSTA-MUSCL scheme, the comparisons of the
simulated water-depth hydrographs with the experimental data at different observation stations
are shown in Figure 20. The results show the shock formation, propagation and reflection in the
flow field. For all observation stations, the simulated water depths agree well with the measured.
Apparently, the simulated results by the FMUSTA-MUSCL scheme are better than the FMUSTA
scheme, especially for the G2 station. In addition, Figure 21 shows the simulation results at
G4 as an example by the FMUSTA, GMUSAT, Roe, HLL and FMUSTA-MUSCL schemes for
comparison. Small differences are observed between all tested first-order schemes. It implies that
all first-order schemes give about the same solutions. This would have resulted by the inclusion of
source terms in the shallow-water equations. However, the GMUSTA scheme is about 22% more
expensive than the FMUSTA scheme. Comparing with the GMUSTA scheme, the attraction of the
proposed FMUSTA scheme is its simplicity and efficiency. According to CPU-time consumption,
the FMUSTA scheme would be a better choice for the practical shallow-water flow problems with
the source terms.

By the FMUSTA-MUSCL scheme, the simulated 2D contour plots for water-depth variations
at t=0.5 and 4.0 s are shown in Figures 22(a) and (b), respectively. According to the simulated
results, the proposed schemes were found to be capable of resolving shocks, handling complex
geometries with dry-bed condition.

5. CONCLUSIONS

For solving 2D SWE with source terms, the FVM and the multi-stage (MUSTA) method are
employed to propose a finite-volume multi-stage (FMUSTA) scheme. The local Lax–Friedrichs
numerical flux function is incorporated into the MUSTA method with FVM framework, leading to
the first-order monotonic numerical flux. The predictor–corrector MUSCL method is employed to
achieve the second-order accuracy in space and time. The SGM for the treatment of source terms
is adopted to obtain the preservation of well-balancing property.

Adopting the proposed FMUSTA scheme requires the choice of the number of stages K in
the local time marching. From the simulated results of the 1D idealized dam-break problems, the
one-stage FMUSTA scheme (K =1) with two cells was found to be more efficient among the
schemes tested in the present study and recommended for practical applications due to CPU-time
consumption. On the basis of the calculated error norms and CPU-time consumption summarized
in Tables I–III, the proposed FMUSTA schemes was found to be more accurate than the HLL
scheme and more efficient than the Roe scheme. Compared with the popularly used Roe and HLL
Riemann solvers, the proposed schemes do not require a detailed knowledge on the solution of
the Riemann problem, leading to the ease coding and generality. Besides, the proposed schemes
do not require the special treatment of entropy fixes and yet obtain high resolutions automatically
for the class of dam-break problems with critical points at the dam site.

From the comparison of the exact solutions and the simulated results, the proposed schemes
with the SGM do produce accurate solutions for the steady transcritical flow problem. On the basis
of the 2D oblique hydraulic jump problem, the proposed FMUSTA scheme has superior overall
numerical accuracy according to the smallest error norms of L1 and L2. Using the numerical test
of the hypothetical (2D circular) dam-break flow problem, it is demonstrated that the proposed

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:177–204
DOI: 10.1002/fld



FINITE-VOLUME MULTI-STAGE SCHEMES 203

schemes have shock-capturing capability of the 2D circular propagating wave. The numerical
verifications against the dam-break experiments demonstrate satisfactory capability and reliability
of the proposed schemes in modeling the dry-bed dam-break flows with abrupt bed variations. It
is concluded that the proposed schemes are accurate and efficient for modeling hydraulic shock
waves in shallow-water flows.

ACKNOWLEDGEMENTS

The facilities provided for this study by the Hydrotech Research Institute, National Taiwan University,
Taipei, Taiwan, are hereby gratefully acknowledged. Part of the financial supports from the National
Science Council, Taiwan, under Grant Nos. NSC 95-2625-Z-002-022 and NSC 95-2622-E-002 -011-CC3
is highly appreciated.

REFERENCES

1. Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational
Physics 1981; 43:357–372.

2. Steger JL, Warming RF. Flux vector splitting of the inviscid gas dynamic equations with application to finite
difference methods. Journal of Computational Physics 1981; 40:263–293.

3. Osher S, Solomone F. Upwind difference schemes for hyperbolic systems of conservation laws. Mathematics
and Computers in Simulation 1982; 38:339–374.

4. Hirsch C. Numerical Computation of Internal and External Flows, vol. 2. Wiley: Chichester, 1990.
5. Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer: Berlin, 1997.
6. LeVeque RJ. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press: U.K., 2002.
7. Zoppou C, Roberts S. Catastrophic collapse of water supply reservoirs in urban areas. Journal of Hydraulic

Engineering 1999; 125(7):686–695.
8. Toro EF. Shock-capturing Methods for Free-surface Shallow Water Flows. Wiley: New York, 2001.
9. Wan Q, Wan H, Zhou C, Wu Y. Simulating the hydraulic characteristics of the lower Yellow River by the

finite-volume technique. Hydrological Processes 2002; 16(14):2767–2769.
10. Erduran KS, Kutija V, Hewett CJM. Performance of finite volume solutions to the shallow water equations with

shock-capturing schemes. International Journal for Numerical Methods in Fluids 2002; 40:1237–1273.
11. Lai JS, Lin GF, Guo WD. Simulation of hydraulic shock waves by hybrid flux-splitting schemes in finite volume

method. Journal of Mechanics 2005; 21(2):85–101.
12. Lai JS, Lin GF, Guo WD. An upstream flux-splitting finite-volume scheme for 2D shallow water equations.

International Journal for Numerical Methods in Fluids 2005; 48(10):1149–1174.
13. Toro EF.Multi-stage Predictor–corrector Fluxes for Hyperbolic Equations. Isaac Newton Institute for Mathematical

Sciences Preprint Series. University of Cambridge: U.K., NI03037-NPA, 2003.
14. Titarev VA, Toro EF. MUSTA schemes for multi-dimensional hyperbolic systems: analysis and improvements.

International Journal for Numerical Methods in Fluids 2005; 49(2):117–147.
15. Toro EF, Titarev VA. MUSTA fluxes for systems of conservation laws. Journal of Computational Physics 2006;

216:403–429.
16. Zhou JG, Causon DM, Mingham CG, Ingrams DM. The surface gradient method for the treatment of source

terms in the shallow water equations. Journal of Computational Physics 2001; 168:1–25.
17. Tan WY. Shallow Water Hydrodynamics. Elsevier: New York, 1992.
18. Lin GF, Lai JS, Guo WD. Finite-volume component-wise TVD schemes for 2D shallow water equations. Advances

in Water Resources 2003; 26(8):861–873.
19. Yu H, Liu YP. A second-order accurate, component-wise TVD scheme for nonlinear, hyperbolic conservation

laws. Journal of Computational Physics 2001; 173:1–16.
20. Leveque RJ. Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady

wave-propagation algorithm. Journal of Computational Physics 1998; 146:346–365.
21. Brufau P, Vazquez-Cendon ME, Garcia-Navarro P. A numerical model for the flooding and drying of irregular

domains. International Journal for Numerical Methods in Fluids 2002; 39:247–275.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:177–204
DOI: 10.1002/fld



204 W.-D. GUO, J.-S. LAI AND G.-F. LIN

22. Zhou JG, Causon DM, Ingrams DM, Mingham CG. Numerical solutions of the shallow water equations with
discontinuous bed topography. International Journal for Numerical Methods in Fluids 2002; 38:769–788.

23. Brufau P, Garcia-Navarro P. Unsteady free surface flow simulation over complex topography with a
multidimensional upwind technique. Journal of Computational Physics 2003; 186:503–526.

24. Gallouet T, Herard JM, Seguin N. Some approximate Godunov schemes to compute shallow water equations
with topography. Computers and Fluids 2003; 32:479–513.

25. Audusse E, Bouchut F, Bristeau MO, Klein R, Perthame B. A fast and stable well-balanced scheme with
hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing 2004; 25(6):2050–2065.

26. Wang JW, Liu RX. A comparative study of finite volume methods on unstructured meshes for simulation of 2D
shallow water wave problems. Mathematics and Computers in Simulation 2000; 53:171–184.

27. Guo WD, Lai JS, Lin GF. Hybrid flux-splitting finite-volume scheme for the shallow water flow simulations
with source terms. Journal of Mechanics 2007; 23(4):269–283.

28. Stoker JJ. Water Waves: Mathematical Theory with Applications. Wiley-Interscience: Singapore, 1958.
29. Alcrudo F, Benkhaldoun F. Exact solutions to the Riemann problem of the shallow water equations with a bottom

step. Computers and Fluids 2001; 30(6):643–671.
30. Hager WH, Schwalt M, Jimenez O, Chaudry MH. Supercritical flow near an abrupt wall deflection. Journal of

Hydraulic Research 1994; 32(1):103–118.
31. Aureli F, Mignosa P, Tomirotti M. Numerical simulation and experimental verification of dam-break flows with

shocks. Twelfth International Conference on Computational Methods in Water Resources, Crete, Greece, 15–19
June 1998; 387–394.

32. Zhou JG, Causon DM, Mingham CG, Ingrams DM. Numerical prediction of dam-break flows in general geometries
with complex bed topography. Journal of Hydraulic Engineering 2004; 130(4):332–340.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:177–204
DOI: 10.1002/fld


